This documentation is automatically generated by online-judge-tools/verification-helper
#include "lib/data_structure/kd_tree.hpp"
/**
* @brief k-d Tree
* @see https://trap.jp/post/1489/
*/
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
template <class S,
S(*op)(S, S),
S(*e)(),
class F,
S(*mapping)(F, S, int),
F(*composition)(F, F),
F(*id)()>
struct KdTree{
static constexpr long long INF = std::numeric_limits<long long>::max() / 3;
static constexpr long long NINF = -INF;
struct Point{
long long x, y;
S val;
Point() {}
Point(long long x, long long y, S val) : x(x), y(y), val(val) {}
};
private:
struct Node{
long long min_x, max_x, min_y, max_y;
int size, index;
S sum;
F lazy;
Node() : min_x(INF), max_x(NINF), min_y(INF), max_y(NINF), size(0), index(-1), sum(e()), lazy(id()) {}
Node(Point p, int i = -1) : min_x(p.x), max_x(p.x), min_y(p.y), max_y(p.y), size(1), index(i), sum(p.val), lazy(id()) {}
};
int _n, size, log;
std::vector<Node> nodes;
std::vector<std::pair<S, int>> info;
void pull(int k){
if(k == 0) return;
nodes[k].size = nodes[2 * k].size + nodes[2 * k + 1].size;
nodes[k].min_x = std::min(nodes[2 * k].min_x, nodes[2 * k + 1].min_x);
nodes[k].max_x = std::max(nodes[2 * k].max_x, nodes[2 * k + 1].max_x);
nodes[k].min_y = std::min(nodes[2 * k].min_y, nodes[2 * k + 1].min_y);
nodes[k].max_y = std::max(nodes[2 * k].max_y, nodes[2 * k + 1].max_y);
nodes[k].sum = op(nodes[2 * k].sum, nodes[2 * k + 1].sum);
}
void all_apply(int k, F f){
nodes[k].sum = mapping(f, nodes[k].sum, nodes[k].size);
if(k < size) nodes[k].lazy = composition(f, nodes[k].lazy);
}
void push(int k){
all_apply(2 * k, nodes[k].lazy);
all_apply(2 * k + 1, nodes[k].lazy);
nodes[k].lazy = id();
}
void build(std::vector<std::pair<Point, int>> &v, int l, int r, bool div_x = true){
int len = r - l;
if(len == 1){
nodes[size + l] = Node(v[l].first, v[l].second);
if(v[l].second != -1){
info[v[l].second].second = l;
}
return;
}
int m = (l + r) / 2;
if(div_x){
std::nth_element(v.begin() + l, v.begin() + m, v.begin() + r, [](const std::pair<Point, int> &p, const std::pair<Point, int> &q){
return p.first.x < q.first.x;
});
}else{
std::nth_element(v.begin() + l, v.begin() + m, v.begin() + r, [](const std::pair<Point, int> &p, const std::pair<Point, int> &q){
return p.first.y < q.first.y;
});
}
build(v, l, m, !div_x);
build(v, m, r, !div_x);
}
bool inside(long long dx, long long dy, long long dist){
using i128 = __int128_t;
return i128(dx) * dx + i128(dy) * dy <= i128(dist) * dist;
}
public:
KdTree(const std::vector<std::pair<long long, long long>> &point) : _n(point.size()){
std::vector<S> val(_n, e());
init(point, val);
}
KdTree(const std::vector<std::pair<long long, long long>> &point, const std::vector<S> &val) : _n(point.size()){
init(point, val);
}
void init(const std::vector<std::pair<long long, long long>> &point, const std::vector<S> &val){
assert(point.size() == val.size());
size = 1, log = 0;
while(size < _n) size *= 2, log++;
nodes.resize(size * 2);
info.resize(size, {e(), -1});
std::vector<std::pair<Point, int>> P(size, {Point{INF, INF, e()}, -1});
for(int i = 0; i < _n; i++){
P[i] = {Point(point[i].first, point[i].second, val[i]), i};
}
build(P, 0, size);
for(int i = size - 1; i >= 1; i--) pull(i);
}
void on(int k){
assert(0 <= k && k < _n);
int p = info[k].second + size;
for(int i = log; i >= 1; i--) push(p >> i);
if(nodes[p].size == 1){
return;
}
nodes[p].size = 1;
nodes[p].sum = info[k].first;
for(int i = 1; i <= log; i++) pull(p >> i);
}
void off(int k){
assert(0 <= k && k < _n);
int p = info[k].second + size;
for(int i = log; i >= 1; i--) push(p >> i);
info[k].first = nodes[p].sum;
nodes[p].size = 0;
nodes[p].sum = e();
for(int i = 1; i <= log; i++) pull(p >> i);
}
void update(int k, const S &x){
assert(0 <= k && k < _n);
int p = info[k].second + size;
for(int i = log; i >= 1; i--) push(p >> i);
nodes[p].sum = x;
for(int i = 1; i <= log; i++) pull(p >> i);
}
// [sx, tx] x [sy, ty]
void apply(long long sx, long long sy, long long tx, long long ty, const F &f){
if(sx > tx || sy > ty) return;
std::queue<int> que;
std::vector<int> st;
que.push(1);
while(que.size()){
int p = que.front();
que.pop();
if(nodes[p].size == 0 || nodes[p].max_x < sx || tx < nodes[p].min_x || nodes[p].max_y < sy || ty < nodes[p].min_y) continue;
if(sx <= nodes[p].min_x && nodes[p].max_x <= tx && sy <= nodes[p].min_y && nodes[p].max_y <= ty){
all_apply(p, f);
continue;
}
push(p);
que.push(2 * p);
que.push(2 * p + 1);
st.push_back(p);
}
while(st.size()){
pull(st.back());
st.pop_back();
}
}
// [sx, tx] x [sy, ty]
S query(long long sx, long long sy, long long tx, long long ty){
if(sx > tx || sy > ty) return e();
std::queue<int> que;
que.push(1);
S res = e();
while(que.size()){
int p = que.front();
que.pop();
if(nodes[p].size == 0 || nodes[p].max_x < sx || tx < nodes[p].min_x || nodes[p].max_y < sy || ty < nodes[p].min_y) continue;
if(sx <= nodes[p].min_x && nodes[p].max_x <= tx && sy <= nodes[p].min_y && nodes[p].max_y <= ty){
res = op(res, nodes[p].sum);
continue;
}
push(p);
que.push(2 * p);
que.push(2 * p + 1);
}
return res;
}
// ユークリッド距離
template <typename T>
void getNearbyPoints(long long x, long long y, long long dist, const T &f){
std::queue<int> que;
que.push(1);
while(que.size()){
int p = que.front();
que.pop();
if(nodes[p].size == 0 || !inside(std::clamp(x, nodes[p].min_x, nodes[p].max_x) - x, std::clamp(y, nodes[p].min_y, nodes[p].max_y) - y, dist)) continue;
if(nodes[p].size == 1){
f(nodes[p].index);
continue;
}
que.push(2 * p);
que.push(2 * p + 1);
}
}
};
#line 1 "lib/data_structure/kd_tree.hpp"
/**
* @brief k-d Tree
* @see https://trap.jp/post/1489/
*/
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
template <class S,
S(*op)(S, S),
S(*e)(),
class F,
S(*mapping)(F, S, int),
F(*composition)(F, F),
F(*id)()>
struct KdTree{
static constexpr long long INF = std::numeric_limits<long long>::max() / 3;
static constexpr long long NINF = -INF;
struct Point{
long long x, y;
S val;
Point() {}
Point(long long x, long long y, S val) : x(x), y(y), val(val) {}
};
private:
struct Node{
long long min_x, max_x, min_y, max_y;
int size, index;
S sum;
F lazy;
Node() : min_x(INF), max_x(NINF), min_y(INF), max_y(NINF), size(0), index(-1), sum(e()), lazy(id()) {}
Node(Point p, int i = -1) : min_x(p.x), max_x(p.x), min_y(p.y), max_y(p.y), size(1), index(i), sum(p.val), lazy(id()) {}
};
int _n, size, log;
std::vector<Node> nodes;
std::vector<std::pair<S, int>> info;
void pull(int k){
if(k == 0) return;
nodes[k].size = nodes[2 * k].size + nodes[2 * k + 1].size;
nodes[k].min_x = std::min(nodes[2 * k].min_x, nodes[2 * k + 1].min_x);
nodes[k].max_x = std::max(nodes[2 * k].max_x, nodes[2 * k + 1].max_x);
nodes[k].min_y = std::min(nodes[2 * k].min_y, nodes[2 * k + 1].min_y);
nodes[k].max_y = std::max(nodes[2 * k].max_y, nodes[2 * k + 1].max_y);
nodes[k].sum = op(nodes[2 * k].sum, nodes[2 * k + 1].sum);
}
void all_apply(int k, F f){
nodes[k].sum = mapping(f, nodes[k].sum, nodes[k].size);
if(k < size) nodes[k].lazy = composition(f, nodes[k].lazy);
}
void push(int k){
all_apply(2 * k, nodes[k].lazy);
all_apply(2 * k + 1, nodes[k].lazy);
nodes[k].lazy = id();
}
void build(std::vector<std::pair<Point, int>> &v, int l, int r, bool div_x = true){
int len = r - l;
if(len == 1){
nodes[size + l] = Node(v[l].first, v[l].second);
if(v[l].second != -1){
info[v[l].second].second = l;
}
return;
}
int m = (l + r) / 2;
if(div_x){
std::nth_element(v.begin() + l, v.begin() + m, v.begin() + r, [](const std::pair<Point, int> &p, const std::pair<Point, int> &q){
return p.first.x < q.first.x;
});
}else{
std::nth_element(v.begin() + l, v.begin() + m, v.begin() + r, [](const std::pair<Point, int> &p, const std::pair<Point, int> &q){
return p.first.y < q.first.y;
});
}
build(v, l, m, !div_x);
build(v, m, r, !div_x);
}
bool inside(long long dx, long long dy, long long dist){
using i128 = __int128_t;
return i128(dx) * dx + i128(dy) * dy <= i128(dist) * dist;
}
public:
KdTree(const std::vector<std::pair<long long, long long>> &point) : _n(point.size()){
std::vector<S> val(_n, e());
init(point, val);
}
KdTree(const std::vector<std::pair<long long, long long>> &point, const std::vector<S> &val) : _n(point.size()){
init(point, val);
}
void init(const std::vector<std::pair<long long, long long>> &point, const std::vector<S> &val){
assert(point.size() == val.size());
size = 1, log = 0;
while(size < _n) size *= 2, log++;
nodes.resize(size * 2);
info.resize(size, {e(), -1});
std::vector<std::pair<Point, int>> P(size, {Point{INF, INF, e()}, -1});
for(int i = 0; i < _n; i++){
P[i] = {Point(point[i].first, point[i].second, val[i]), i};
}
build(P, 0, size);
for(int i = size - 1; i >= 1; i--) pull(i);
}
void on(int k){
assert(0 <= k && k < _n);
int p = info[k].second + size;
for(int i = log; i >= 1; i--) push(p >> i);
if(nodes[p].size == 1){
return;
}
nodes[p].size = 1;
nodes[p].sum = info[k].first;
for(int i = 1; i <= log; i++) pull(p >> i);
}
void off(int k){
assert(0 <= k && k < _n);
int p = info[k].second + size;
for(int i = log; i >= 1; i--) push(p >> i);
info[k].first = nodes[p].sum;
nodes[p].size = 0;
nodes[p].sum = e();
for(int i = 1; i <= log; i++) pull(p >> i);
}
void update(int k, const S &x){
assert(0 <= k && k < _n);
int p = info[k].second + size;
for(int i = log; i >= 1; i--) push(p >> i);
nodes[p].sum = x;
for(int i = 1; i <= log; i++) pull(p >> i);
}
// [sx, tx] x [sy, ty]
void apply(long long sx, long long sy, long long tx, long long ty, const F &f){
if(sx > tx || sy > ty) return;
std::queue<int> que;
std::vector<int> st;
que.push(1);
while(que.size()){
int p = que.front();
que.pop();
if(nodes[p].size == 0 || nodes[p].max_x < sx || tx < nodes[p].min_x || nodes[p].max_y < sy || ty < nodes[p].min_y) continue;
if(sx <= nodes[p].min_x && nodes[p].max_x <= tx && sy <= nodes[p].min_y && nodes[p].max_y <= ty){
all_apply(p, f);
continue;
}
push(p);
que.push(2 * p);
que.push(2 * p + 1);
st.push_back(p);
}
while(st.size()){
pull(st.back());
st.pop_back();
}
}
// [sx, tx] x [sy, ty]
S query(long long sx, long long sy, long long tx, long long ty){
if(sx > tx || sy > ty) return e();
std::queue<int> que;
que.push(1);
S res = e();
while(que.size()){
int p = que.front();
que.pop();
if(nodes[p].size == 0 || nodes[p].max_x < sx || tx < nodes[p].min_x || nodes[p].max_y < sy || ty < nodes[p].min_y) continue;
if(sx <= nodes[p].min_x && nodes[p].max_x <= tx && sy <= nodes[p].min_y && nodes[p].max_y <= ty){
res = op(res, nodes[p].sum);
continue;
}
push(p);
que.push(2 * p);
que.push(2 * p + 1);
}
return res;
}
// ユークリッド距離
template <typename T>
void getNearbyPoints(long long x, long long y, long long dist, const T &f){
std::queue<int> que;
que.push(1);
while(que.size()){
int p = que.front();
que.pop();
if(nodes[p].size == 0 || !inside(std::clamp(x, nodes[p].min_x, nodes[p].max_x) - x, std::clamp(y, nodes[p].min_y, nodes[p].max_y) - y, dist)) continue;
if(nodes[p].size == 1){
f(nodes[p].index);
continue;
}
que.push(2 * p);
que.push(2 * p + 1);
}
}
};