This documentation is automatically generated by online-judge-tools/verification-helper
#include "lib/math/rational_approximation.hpp"
分子、分母がともに $N$ 以下である既約分数において、分数 $p$ 以下で最大のものと $p$ より大きいもので最小のものを求めます。
見つからなかった場合には、$0/1$, $1/0$ がそれぞれ返り値となります。
#pragma once
/**
* @brief Rational Approximation (有理数近似)
* @docs docs/math/rational_approximation.md
*/
#include "../math/fraction.hpp"
template <typename T>
pair<fraction<T>, fraction<T>> rationalApproximation(T n, fraction<T> p){
fraction<T> a(0, 1), b(1, 0);
fraction<T> x(0, 1), y(1, 0);
bool ok_left = true, ok_right = true;
while(ok_left && ok_right){
fraction<T> m(a.p + b.p, a.q + b.q);
if(p < m){
T ok = 0, ng = n;
while(ng - ok > 1){
T mid = (ok + ng) / 2;
fraction<T> m2(a.p * mid + b.p, a.q * mid + b.q);
if(p < m2 && m2.p <= n && m2.q <= n){
ok = mid;
m = m2;
} else{
ng = mid;
}
}
b = m;
if(m.p <= n && m.q <= n){
y = m;
} else{
ok_left = false;
}
} else{
T ok = 0, ng = n;
while(ng - ok > 1){
T mid = (ok + ng) / 2;
fraction<T> m2(a.p + b.p * mid, a.q + b.q * mid);
if(p >= m2 && m2.p <= n && m2.q <= n){
ok = mid;
m = m2;
} else{
ng = mid;
}
}
a = m;
if(m.p <= n && m.q <= n){
x = m;
} else{
ok_right = false;
}
}
}
return make_pair(x, y);
}
#line 2 "lib/math/rational_approximation.hpp"
/**
* @brief Rational Approximation (有理数近似)
* @docs docs/math/rational_approximation.md
*/
#line 2 "lib/math/fraction.hpp"
/**
* @brief Fraction
* @docs docs/math/fraction.md
*/
template <typename T>
struct fraction{
T p, q; // long long or BigInt
fraction(T P = 0, T Q = 1) : p(P), q(Q){
normalize();
}
void normalize(){
T g = __gcd(p, q);
p /= g, q /= g;
if(q < 0) p *= -1, q *= -1;
}
inline bool operator==(const fraction &other) const {
return p * other.q == other.p * q;
}
inline bool operator!=(const fraction &other) const {
return p * other.q != other.p * q;
}
inline bool operator<(const fraction &other) const {
return p * other.q < other.p * q;
}
inline bool operator<=(const fraction &other) const {
return p * other.q <= other.p * q;
}
inline bool operator>(const fraction &other) const {
return p * other.q > other.p * q;
}
inline bool operator>=(const fraction &other) const {
return p * other.q >= other.p * q;
}
inline fraction operator+(const fraction &other) const { return fraction(p * other.q + q * other.p, q * other.q); }
inline fraction operator-(const fraction &other) const { return fraction(p * other.q - q * other.p, q * other.q); }
inline fraction operator*(const fraction &other) const { return fraction(p * other.p, q * other.q); }
inline fraction operator/(const fraction &other) const { return fraction(p * other.q, q * other.p); }
inline fraction &operator+=(const fraction &rhs) noexcept {
*this = *this + rhs;
return *this;
}
inline fraction &operator-=(const fraction &rhs) noexcept {
*this = *this - rhs;
return *this;
}
inline fraction &operator*=(const fraction &rhs) noexcept {
*this = *this * rhs;
return *this;
}
inline fraction &operator/=(const fraction &rhs) noexcept {
*this = *this / rhs;
return *this;
}
friend inline istream &operator>>(istream &is, fraction &x) noexcept {
is >> x.p;
x.q = 1;
return is;
}
friend inline ostream &operator<<(ostream &os, const fraction &x) noexcept { return os << x.p << "/" << x.q; }
};
#line 9 "lib/math/rational_approximation.hpp"
template <typename T>
pair<fraction<T>, fraction<T>> rationalApproximation(T n, fraction<T> p){
fraction<T> a(0, 1), b(1, 0);
fraction<T> x(0, 1), y(1, 0);
bool ok_left = true, ok_right = true;
while(ok_left && ok_right){
fraction<T> m(a.p + b.p, a.q + b.q);
if(p < m){
T ok = 0, ng = n;
while(ng - ok > 1){
T mid = (ok + ng) / 2;
fraction<T> m2(a.p * mid + b.p, a.q * mid + b.q);
if(p < m2 && m2.p <= n && m2.q <= n){
ok = mid;
m = m2;
} else{
ng = mid;
}
}
b = m;
if(m.p <= n && m.q <= n){
y = m;
} else{
ok_left = false;
}
} else{
T ok = 0, ng = n;
while(ng - ok > 1){
T mid = (ok + ng) / 2;
fraction<T> m2(a.p + b.p * mid, a.q + b.q * mid);
if(p >= m2 && m2.p <= n && m2.q <= n){
ok = mid;
m = m2;
} else{
ng = mid;
}
}
a = m;
if(m.p <= n && m.q <= n){
x = m;
} else{
ok_right = false;
}
}
}
return make_pair(x, y);
}