This documentation is automatically generated by online-judge-tools/verification-helper
#include "lib/string/manacher.hpp"
文字列 $S$ のそれぞれの $i : (0 \leq i < \lvert S\lvert)$ について、$S[i]$ を中心とする最長回文の半径を求めます。
$\mathrm{O}(\lvert S\lvert)$
#pragma once
/**
* @brief Manacher
* @docs docs/string/manacher.md
*/
template <typename T>
vector<int> manacher(const T &s){
int n = s.size();
vector<int> rad(n);
int i = 0, j = 0;
while(i < n){
while(i - j >= 0 && i + j < (int) s.size() && s[i - j] == s[i + j]){
j++;
}
rad[i] = j;
int k = 1;
while(i - k >= 0 && i + k < n && k + rad[i - k] < j){
rad[i + k] = rad[i - k];
k++;
}
i += k;
j -= k;
}
return rad;
}
struct PalindromeCheck{
const string s;
string t;
int n;
vector<int> mana;
PalindromeCheck(const string &str) : s(str){
n = s.size();
t = "$";
for(int i = 0; i < n; i++){
t += s[i];
t += "$";
}
mana = manacher(t);
}
// [l, r)
bool isPalindrome(int l, int r) const {
int mid = l + r;
return r * 2 - mid - 1 < mana[mid];
}
};
#line 2 "lib/string/manacher.hpp"
/**
* @brief Manacher
* @docs docs/string/manacher.md
*/
template <typename T>
vector<int> manacher(const T &s){
int n = s.size();
vector<int> rad(n);
int i = 0, j = 0;
while(i < n){
while(i - j >= 0 && i + j < (int) s.size() && s[i - j] == s[i + j]){
j++;
}
rad[i] = j;
int k = 1;
while(i - k >= 0 && i + k < n && k + rad[i - k] < j){
rad[i + k] = rad[i - k];
k++;
}
i += k;
j -= k;
}
return rad;
}
struct PalindromeCheck{
const string s;
string t;
int n;
vector<int> mana;
PalindromeCheck(const string &str) : s(str){
n = s.size();
t = "$";
for(int i = 0; i < n; i++){
t += s[i];
t += "$";
}
mana = manacher(t);
}
// [l, r)
bool isPalindrome(int l, int r) const {
int mid = l + r;
return r * 2 - mid - 1 < mana[mid];
}
};