kyopro_library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub dyktr06/kyopro_library

:heavy_check_mark: test/library_checker/data_structure/range_kth_smallest.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/range_kth_smallest"
#include <bits/stdc++.h>
using namespace std;

#include "../../../lib/data_structure/mo.hpp"
#include "../../../lib/data_structure/binary_indexed_tree.hpp"
#include "../../../lib/others/compression.hpp"

int main(){
    cin.tie(nullptr);
    ios::sync_with_stdio(false);

    int n, q; cin >> n >> q;
    vector<int> a(n), k(q);
    for(int i = 0; i < n; i++){
        cin >> a[i];
    }
    Mo mo(n);
    for(int i = 0; i < q; i++){
        int l, r; cin >> l >> r >> k[i];
        mo.add(l, r);
    }

    compress<int> comp(a);
    vector<int> compressed = comp.getCompressed();
    vector<long long> res(q);
    BinaryIndexedTree<int> BIT(200000);
    long long now = 0;
    auto add = [&](int i){
        BIT.add(compressed[i], 1);
    };
    auto erase = [&](int i){
        BIT.add(compressed[i], -1);
    };
    auto output = [&](int q){
        int idx = BIT.lower_bound(k[q] + 1);
        res[q] = comp.sorted[idx];
    };
    mo.build(add, erase, output);
 
    for(auto ans : res){
        cout << ans << "\n";
    }
}
#line 1 "test/library_checker/data_structure/range_kth_smallest.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_kth_smallest"
#include <bits/stdc++.h>
using namespace std;

#line 2 "lib/data_structure/mo.hpp"

// [0 , N) 上の区間に対する Q 個のクエリを計算します。 : O(N√Q) (区間の伸縮が O(1) で行える場合)
struct Mo{
    int n;
    vector<pair<int, int>> lr;

    Mo(const int n) : n(n) {}

    /* [l, r) */
    void add(const int l, const int r){
        lr.emplace_back(l, r);
    }

    template <typename AL, typename AR, typename EL, typename ER, typename O>
    void build(const AL &add_left, const AR &add_right, const EL &erase_left, const ER &erase_right, const O &out){
        int q = (int) lr.size();
        int border = max<int>(1, 1.0 * n / max<double>(1.0, sqrt(q * 2.0 / 3.0)));
        vector<int> ord(q);
        iota(ord.begin(), ord.end(), 0);
        sort(ord.begin(), ord.end(), [&](int a, int b){
            int ablock = lr[a].first / border, bblock = lr[b].first / border;
            if(ablock != bblock){
                return ablock < bblock;
            }
            return (ablock & 1) ? lr[a].second > lr[b].second : lr[a].second < lr[b].second;
        });
        int l = 0, r = 0;
        for(const auto &k : ord){
            while(l > lr[k].first) add_left(--l);
            while(r < lr[k].second) add_right(r++);
            while(l < lr[k].first) erase_left(l++);
            while(r > lr[k].second) erase_right(--r);
            out(k);
        }
    }

    template <typename A, typename E, typename O>
    void build(const A &add, const E &erase, const O &out){
        build(add, add, erase, erase, out);
    }
};
#line 2 "lib/data_structure/binary_indexed_tree.hpp"

/**
 * @brief Binary Indexed Tree
 * @docs docs/data_structure/binary_indexed_tree.md
 */

#line 9 "lib/data_structure/binary_indexed_tree.hpp"

template <typename T>
struct BinaryIndexedTree{
    int N;
    std::vector<T> BIT;
    BinaryIndexedTree(const int N) : N(N), BIT(N + 1, 0){
    }

    T get(int i){
        return sum(i + 1) - sum(i);
    }

    void add(int i, T x){
        i++;
        while(i <= N){
            BIT[i] += x;
            i += i & -i;
        }
    }

    T sum(int i) const {
        T ans = 0;
        while(i > 0){
            ans += BIT[i];
            i -= i & -i;
        }
        return ans;
    }

    T sum(int L, int R) const {
        return sum(R) - sum(L);
    }

    int lower_bound(T x) const {
        if(x <= 0){
            return 0;
        } else{
            int v = 0, r = 1;
            while(r < N) r = r << 1;
            for(int len = r; len > 0; len = len >> 1){
                if(v + len < N && BIT[v + len] < x){
                    x -= BIT[v + len];
                    v += len;
                }
            }
            return v;
        }
    }

    int upper_bound(T x) const {
        if(x < 0){
            return 0;
        } else{
            int v = 0, r = 1;
            while(r <= N) r = r << 1;
            for(int len = r; len > 0; len = len >> 1){
                if(v + len <= N && BIT[v + len] <= x){
                    x -= BIT[v + len];
                    v += len;
                }
            }
            return v;
        }
    }

    T operator [](int i) const {
        return sum(i, i + 1);
    }
};
#line 2 "lib/others/compression.hpp"

/**
 * @brief Compression (座標圧縮)
 * @docs docs/others/compression.md
 */

#line 10 "lib/others/compression.hpp"

template <typename T>
struct compress{
    std::vector<T> sorted;
    std::vector<int> compressed;

    compress(const std::vector<T> &vec){
        int n = vec.size();
        compressed.resize(n);
        for(T x : vec){
            sorted.emplace_back(x);
        }
        std::sort(sorted.begin(), sorted.end());
        sorted.erase(std::unique(sorted.begin(), sorted.end()), sorted.end());
        for(int i = 0; i < n; ++i){
            compressed[i] = std::lower_bound(sorted.begin(), sorted.end(), vec[i]) - sorted.begin();
        }
    }

    int get(const T &x) const{
        return std::lower_bound(sorted.begin(), sorted.end(), x) - sorted.begin();
    }

    T inv(const int x) const{
        return sorted[x];
    }

    size_t size() const{
        return sorted.size();
    }

    std::vector<int> getCompressed() const{
        return compressed;
    }
};
#line 8 "test/library_checker/data_structure/range_kth_smallest.test.cpp"

int main(){
    cin.tie(nullptr);
    ios::sync_with_stdio(false);

    int n, q; cin >> n >> q;
    vector<int> a(n), k(q);
    for(int i = 0; i < n; i++){
        cin >> a[i];
    }
    Mo mo(n);
    for(int i = 0; i < q; i++){
        int l, r; cin >> l >> r >> k[i];
        mo.add(l, r);
    }

    compress<int> comp(a);
    vector<int> compressed = comp.getCompressed();
    vector<long long> res(q);
    BinaryIndexedTree<int> BIT(200000);
    long long now = 0;
    auto add = [&](int i){
        BIT.add(compressed[i], 1);
    };
    auto erase = [&](int i){
        BIT.add(compressed[i], -1);
    };
    auto output = [&](int q){
        int idx = BIT.lower_bound(k[q] + 1);
        res[q] = comp.sorted[idx];
    };
    mo.build(add, erase, output);
 
    for(auto ans : res){
        cout << ans << "\n";
    }
}
Back to top page