This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/furthest_pair"
#include <bits/stdc++.h>
using namespace std;
#include "../../../lib/geometry/geometry.hpp"
void solve(){
int n; cin >> n;
vector<Geometry::Point> points(n);
for(int i = 0; i < n; i++){
cin >> points[i];
}
auto [dist, p] = Geometry::furthestPair(points);
cout << p.first << " " << p.second << "\n";
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T; cin >> T;
while(T--){
solve();
}
}
#line 1 "test/library_checker/geometry/furthest_pair.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/furthest_pair"
#include <bits/stdc++.h>
using namespace std;
#line 2 "lib/geometry/geometry.hpp"
/**
* @brief Geometry (幾何ライブラリ)
*/
namespace Geometry{
using T = long long;
const T INFT = 9e18;
inline constexpr int type(T x, T y){
if(!x && !y) return 0;
if(y < 0 || (y == 0 && x > 0)) return -1;
return 1;
}
T absT(T x){
if(x < 0) return -x;
return x;
}
struct Point{
T x, y;
Point(T X = 0, T Y = 0) : x(X), y(Y){}
inline bool operator==(const Point &other) const {
return ((x == other.x) && (y == other.y));
}
inline bool operator!=(const Point &other) const {
return ((x != other.x) || (y != other.y));
}
inline bool operator<(const Point &other) const {
int L = type(x, y), R = type(other.x, other.y);
if(L != R) return L < R;
if(x * other.y == other.x * y) return abs(x + y) < abs(other.x + other.y);
return x * other.y > other.x * y;
}
inline bool operator>(const Point &other) const {
int L = type(x, y), R = type(other.x, other.y);
if(L != R) return L > R;
if(x * other.y == other.x * y) return abs(x + y) > abs(other.x + other.y);
return x * other.y < other.x * y;
}
inline Point operator+() const noexcept { return *this; }
inline Point operator-() const noexcept { return Point(-x, -y); }
inline Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); }
inline Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); }
inline Point &operator+=(const Point &p) { return x += p.x, y += p.y, *this; }
inline Point &operator-=(const Point &p) { return x -= p.x, y -= p.y, *this; }
inline T operator*(const Point &p) const { return x * p.x + y * p.y; }
inline Point &operator*=(const T &k) { return x *= k, y *= k, *this; }
inline Point operator*(const T &k) { return (*this *= k); }
// floor
inline Point &operator/=(const T &k) { return x /= k, y /= k, *this; }
inline Point operator/(const T &k) { return (*this /= k); }
friend inline istream &operator>>(istream &is, Point &p) noexcept {
is >> p.x >> p.y;
return is;
}
friend inline ostream &operator<<(ostream &os, const Point &p) noexcept { return os << p.x << " " << p.y; }
};
bool angle_equal(const Point &p, const Point &q){
int L = type(p.x, p.y), R = type(q.x, q.y);
if(L != R) return false;
return p.x * q.y == q.x * p.y;
}
long double rad2deg(long double rad){
return rad * (long double) 180 / acos(-1);
}
long double deg2rad(long double deg){
return deg * acosl(-1) / (long double) 180;
}
Point rotate(const Point &p, long double deg){
complex<T> comp(p.x, p.y);
comp *= exp(complex<T>(.0, deg2rad(deg)));
return Point(comp.real(), comp.imag());
}
T cross(const Point &p, const Point &q){
return p.x * q.y - p.y * q.x;
}
T dot(const Point &p, const Point &q){
return p.x * q.x + p.y * q.y;
}
T manhattanDist(const Point &p, const Point &q){
return absT(p.x - q.x) + absT(p.y - q.y);
}
// 2乗
T dist(const Point &p, const Point &q){
return (p.x - q.x) * (p.x - q.x) + (p.y - q.y) * (p.y - q.y);
}
// 線分 p1-p2 と線分 q1-q2
bool intersection(const Point &p1, const Point &p2, const Point &q1, const Point &q2){
T a = cross(p2 - p1, q1 - p1);
T b = cross(p2 - p1, q2 - p1);
T c = cross(q2 - q1, p1 - q1);
T d = cross(q2 - q1, p2 - q1);
if(a == 0 && b == 0){
T e = dot(p2 - p1, q1 - p1);
T f = dot(p2 - p1, q2 - p1);
if(e > f) swap(e, f);
return e <= dist(p1, p2) && 0 <= f;
}
return a * b <= 0 && c * d <= 0;
}
// 2倍
T polygonArea(const vector<Point> &points){
const int n = points.size();
T res = 0;
for(int i = 0; i < n - 1; i++){
res += cross(points[i], points[i + 1]);
}
res += cross(points[n - 1], points[0]);
return absT(res);
}
vector<Point> convexHull(vector<Point> points){
vector<Point> U, L, res;
sort(points.begin(), points.end(), [](Point p, Point q){
return (p.x != q.x ? p.x < q.x : p.y < q.y);
});
points.erase(unique(points.begin(), points.end()), points.end());
const int n = points.size();
if((int) points.size() <= 2){
return points;
}
// lower
for(int i = 0; i < n; i++){
int j = L.size();
// 傾きで左回りかをチェック
while(j >= 2 && cross(L[j - 1] - L[j - 2], points[i] - L[j - 2]) <= 0){
L.pop_back();
j--;
}
L.push_back(points[i]);
}
// upper
for(int i = n - 1; i >= 0; i--){
int j = U.size();
while(j >= 2 && cross(U[j - 1] - U[j - 2], points[i] - U[j - 2]) <= 0){
U.pop_back();
j--;
}
U.push_back(points[i]);
}
res = L;
for(int i = 1; i < (int) U.size() - 1; i++){
res.push_back(U[i]);
}
return res;
}
// 点が領域外部: 0, 内部: 1, 境界上: 2
int inCcwConvex(Point p, const vector<Point> &points) {
const int n = points.size();
T cr1 = cross(points[1] - points[0], p - points[0]);
T cr2 = cross(points[n - 1] - points[0], p - points[0]);
if(cr1 < 0 || 0 < cr2){
return 0;
}
int l = 1, r = n - 1;
while(abs(r - l) > 1){
int mid = (l + r) / 2;
if(cross(p - points[0], points[mid] - points[0]) >= 0){
r = mid;
} else{
l = mid;
}
}
T cr = cross(points[l] - p, points[r] - p);
if(cr == 0){
return 2;
} else if(cr > 0){
if(cr1 == 0 || cr2 == 0){
return 2;
} else{
return 1;
}
} else{
return 0;
}
}
pair<T, pair<int, int>> closestPair(vector<Point> &points){
const int n = points.size();
assert(n >= 2);
vector<pair<Point, int>> sortp(n);
for(int i = 0; i < n; i++){
sortp[i] = {points[i], i};
}
sort(sortp.begin(), sortp.end(), [](pair<Point, int> p, pair<Point, int> q){
return (p.first.x != q.first.x ? p.first.x < q.first.x : p.first.y < q.first.y);
});
int ans1 = -1, ans2 = -1;
T min_dist = INFT;
auto dfs = [&](auto &self, int l, int r) -> T {
if(r - l <= 1){
return INFT;
}
int mid = (l + r) / 2;
T d = min(self(self, l, mid), self(self, mid, r));
vector<pair<Point, int>> tmp;
for(int i = l; i < r; i++){
T dx = sortp[mid].first.x - sortp[i].first.x;
if(dx * dx < d){
tmp.push_back(sortp[i]);
}
}
sort(tmp.begin(), tmp.end(), [](pair<Point, int> p, pair<Point, int> q){
return p.first.y < q.first.y;
});
for(int i = 0; i < (int) tmp.size(); i++){
for(int j = i + 1; j < (int) tmp.size(); j++){
T dy = tmp[j].first.y - tmp[i].first.y;
if(dy * dy >= d){
break;
}
T td = dist(tmp[i].first, tmp[j].first);
if(td < d){
d = td;
if(d < min_dist){
min_dist = d;
ans1 = tmp[i].second;
ans2 = tmp[j].second;
}
}
}
}
return d;
};
dfs(dfs, 0, n);
return {min_dist, {ans1, ans2}};
}
pair<T, pair<int, int>> furthestPair(vector<Point> &points){
const int n = points.size();
assert(n >= 2);
vector<Point> convex = convexHull(points);
const int m = convex.size();
map<pair<T, T>, int> mp;
for(int i = 0; i < n; i++){
mp[{points[i].x, points[i].y}] = i;
}
vector<int> idx(m);
for(int i = 0; i < m; i++){
idx[i] = mp[{convex[i].x, convex[i].y}];
}
if(m == 1){
return {dist(points[0], points[1]), {0, 1}};
}else if(m == 2){
return {dist(convex[0], convex[1]), {idx[0], idx[1]}};
}
auto compare = [](Point p, Point q){
return p.x != q.x ? p.x < q.x : p.y < q.y;
};
int i = 0, j = 0;
for(int k = 0; k < m; k++){
if(compare(convex[k], convex[i])) i = k;
if(compare(convex[j], convex[k])) j = k;
}
int i0 = i, j0 = j;
T max_dist = 0;
int ans1 = -1, ans2 = -1;
while(i != j0 || j != i0){
T d = dist(convex[i], convex[j]);
if(d > max_dist){
max_dist = d;
ans1 = idx[i];
ans2 = idx[j];
}
if(cross(convex[(i + 1) % m] - convex[i], convex[(j + 1) % m] - convex[j]) < 0){
i = (i + 1) % m;
}else{
j = (j + 1) % m;
}
}
return {max_dist, {ans1, ans2}};
}
}
#line 6 "test/library_checker/geometry/furthest_pair.test.cpp"
void solve(){
int n; cin >> n;
vector<Geometry::Point> points(n);
for(int i = 0; i < n; i++){
cin >> points[i];
}
auto [dist, p] = Geometry::furthestPair(points);
cout << p.first << " " << p.second << "\n";
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T; cin >> T;
while(T--){
solve();
}
}