This documentation is automatically generated by online-judge-tools/verification-helper
#include "lib/convolution/lcm_convolution.hpp"
#pragma once
/**
* @brief LCM Convolution
*/
#include <vector>
#include <cassert>
#include "../convolution/divisor_zeta_mobius_transform.hpp"
template <typename T>
std::vector<T> lcm_convolution(std::vector<T> f, std::vector<T> g){
const int n = (int) f.size();
assert(f.size() == g.size());
assert(1 <= n);
divisor_zeta_transform(f);
divisor_zeta_transform(g);
for(int i = 1; i < n; ++i){
f[i] *= g[i];
}
divisor_mobius_transform(f);
return f;
}
#line 2 "lib/convolution/lcm_convolution.hpp"
/**
* @brief LCM Convolution
*/
#include <vector>
#include <cassert>
#line 2 "lib/convolution/divisor_zeta_mobius_transform.hpp"
/**
* @brief Divisor Zeta/Mobius Transform
*/
#line 8 "lib/convolution/divisor_zeta_mobius_transform.hpp"
#line 2 "lib/math/prime_sieve.hpp"
/**
* @brief Prime Sieve (エラトステネスの篩)
* @docs docs/math/prime-sieve.md
*/
#line 9 "lib/math/prime_sieve.hpp"
template <typename T>
struct PrimeSieve{
int n, half;
std::vector<bool> sieve;
std::vector<T> prime_list;
// sieve[i] ... 2 * i + 1
PrimeSieve(T _n) : n(_n){
init();
}
void init(){
if(n < 2){
return;
}
half = (n + 1) / 2;
sieve.assign(half, true);
sieve[0] = false;
prime_list.emplace_back(2);
for(long long i = 1; 2 * i + 1 <= n; ++i){
if(!sieve[i]) continue;
T p = 2 * i + 1;
prime_list.emplace_back(p);
for(long long j = 2 * i * (i + 1); j < half; j += p){
sieve[j] = false;
}
}
}
bool isPrime(T x){
if(x == 2) return true;
if(x % 2 == 0) return false;
return sieve[x / 2];
}
T getPrimeCount(){
return prime_list.size();
}
T getKthPrime(int k){
return prime_list[k];
}
};
#line 10 "lib/convolution/divisor_zeta_mobius_transform.hpp"
template <typename T>
void divisor_zeta_transform(std::vector<T> &a){
int n = a.size() - 1;
PrimeSieve<int> sieve(n);
for(int d = 2; d <= n; d++){
if(sieve.isPrime(d)){
for(int i = 1; i * d <= n; i++){
a[i * d] += a[i];
}
}
}
}
template <typename T>
void divisor_reversed_zeta_transform(std::vector<T> &a){
int n = a.size() - 1;
PrimeSieve<int> sieve(n);
for(int d = 2; d <= n; d++){
if(sieve.isPrime(d)){
for(int i = n / d; i >= 1; i--){
a[i] += a[i * d];
}
}
}
}
template <typename T>
void divisor_mobius_transform(std::vector<T> &a){
int n = a.size() - 1;
PrimeSieve<int> sieve(n);
for(int d = 2; d <= n; d++){
if(sieve.isPrime(d)){
for(int i = n / d; i >= 1; i--){
a[i * d] -= a[i];
}
}
}
}
template <typename T>
void divisor_reversed_mobius_transform(std::vector<T> &a){
int n = a.size() - 1;
PrimeSieve<int> sieve(n);
for(int d = 2; d <= n; d++){
if(sieve.isPrime(d)){
for(int i = 1; i * d <= n; i++){
a[i] -= a[i * d];
}
}
}
}
#line 11 "lib/convolution/lcm_convolution.hpp"
template <typename T>
std::vector<T> lcm_convolution(std::vector<T> f, std::vector<T> g){
const int n = (int) f.size();
assert(f.size() == g.size());
assert(1 <= n);
divisor_zeta_transform(f);
divisor_zeta_transform(g);
for(int i = 1; i < n; ++i){
f[i] *= g[i];
}
divisor_mobius_transform(f);
return f;
}