This documentation is automatically generated by online-judge-tools/verification-helper
#include "lib/data_structure/lazy_segment_tree.hpp"
#pragma once
template <class S,
S(*op)(S, S),
S(*e)(),
class F,
S(*mapping)(F, S),
F(*composition)(F, F),
F(*id)()>
struct LazySegTree{
private:
int _n, size, log;
vector<S> d;
vector<F> lz;
void pull(int k){ d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f){
d[k] = mapping(f, d[k]);
if(k < size) lz[k] = composition(f, lz[k]);
}
void push(int k){
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
public:
LazySegTree() : LazySegTree(0){}
LazySegTree(int n) : LazySegTree(vector<S>(n, e())){}
LazySegTree(const vector<S> &v) : _n(int(v.size())){
log = 0;
size = 1;
while(size < _n) size <<= 1, log++;
d = vector<S>(2 * size, e());
lz = vector<F>(size, id());
for(int i = 0; i < _n; i++) d[size + i] = v[i];
for(int i = size - 1; i >= 1; i--){
pull(i);
}
}
void update(int p, S x){
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for(int i = 1; i <= log; i++) pull(p >> i);
}
S get(int p){
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S query(int l, int r){
assert(0 <= l && l <= r && r <= _n);
if(l == r) return e();
l += size;
r += size;
for(int i = log; i >= 1; i--){
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while(l < r){
if(l & 1) sml = op(sml, d[l++]);
if(r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_query(){ return d[1]; }
void apply(int p, F f){
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for(int i = 1; i <= log; i++) pull(p >> i);
}
void apply(int l, int r, F f){
assert(0 <= l && l <= r && r <= _n);
if(l == r) return;
l += size;
r += size;
for(int i = log; i >= 1; i--){
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while(l < r){
if(l & 1) all_apply(l++, f);
if(r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for(int i = 1; i <= log; i++){
if(((l >> i) << i) != l) pull(l >> i);
if(((r >> i) << i) != r) pull((r - 1) >> i);
}
}
template <bool (*g)(S)>
int max_right(int l){
return max_right(l, [](S x){ return g(x); });
}
template <class G>
int max_right(int l, G g){
assert(0 <= l && l <= _n);
assert(g(e()));
if(l == _n) return _n;
l += size;
for(int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do{
while(l % 2 == 0) l >>= 1;
if(!g(op(sm, d[l]))){
while(l < size){
push(l);
l = (2 * l);
if(g(op(sm, d[l]))){
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while((l & -l) != l);
return _n;
}
template <bool (*g)(S)>
int min_left(int r){
return min_left(r, [](S x){ return g(x); });
}
template <class G>
int min_left(int r, G g){
assert(0 <= r && r <= _n);
assert(g(e()));
if(r == 0) return 0;
r += size;
for(int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do{
r--;
while(r > 1 && (r % 2)) r >>= 1;
if(!g(op(d[r], sm))){
while(r < size){
push(r);
r = (2 * r + 1);
if(g(op(d[r], sm))){
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while((r & -r) != r);
return 0;
}
};
#line 2 "lib/data_structure/lazy_segment_tree.hpp"
template <class S,
S(*op)(S, S),
S(*e)(),
class F,
S(*mapping)(F, S),
F(*composition)(F, F),
F(*id)()>
struct LazySegTree{
private:
int _n, size, log;
vector<S> d;
vector<F> lz;
void pull(int k){ d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f){
d[k] = mapping(f, d[k]);
if(k < size) lz[k] = composition(f, lz[k]);
}
void push(int k){
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
public:
LazySegTree() : LazySegTree(0){}
LazySegTree(int n) : LazySegTree(vector<S>(n, e())){}
LazySegTree(const vector<S> &v) : _n(int(v.size())){
log = 0;
size = 1;
while(size < _n) size <<= 1, log++;
d = vector<S>(2 * size, e());
lz = vector<F>(size, id());
for(int i = 0; i < _n; i++) d[size + i] = v[i];
for(int i = size - 1; i >= 1; i--){
pull(i);
}
}
void update(int p, S x){
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for(int i = 1; i <= log; i++) pull(p >> i);
}
S get(int p){
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S query(int l, int r){
assert(0 <= l && l <= r && r <= _n);
if(l == r) return e();
l += size;
r += size;
for(int i = log; i >= 1; i--){
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while(l < r){
if(l & 1) sml = op(sml, d[l++]);
if(r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_query(){ return d[1]; }
void apply(int p, F f){
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for(int i = 1; i <= log; i++) pull(p >> i);
}
void apply(int l, int r, F f){
assert(0 <= l && l <= r && r <= _n);
if(l == r) return;
l += size;
r += size;
for(int i = log; i >= 1; i--){
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while(l < r){
if(l & 1) all_apply(l++, f);
if(r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for(int i = 1; i <= log; i++){
if(((l >> i) << i) != l) pull(l >> i);
if(((r >> i) << i) != r) pull((r - 1) >> i);
}
}
template <bool (*g)(S)>
int max_right(int l){
return max_right(l, [](S x){ return g(x); });
}
template <class G>
int max_right(int l, G g){
assert(0 <= l && l <= _n);
assert(g(e()));
if(l == _n) return _n;
l += size;
for(int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do{
while(l % 2 == 0) l >>= 1;
if(!g(op(sm, d[l]))){
while(l < size){
push(l);
l = (2 * l);
if(g(op(sm, d[l]))){
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while((l & -l) != l);
return _n;
}
template <bool (*g)(S)>
int min_left(int r){
return min_left(r, [](S x){ return g(x); });
}
template <class G>
int min_left(int r, G g){
assert(0 <= r && r <= _n);
assert(g(e()));
if(r == 0) return 0;
r += size;
for(int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do{
r--;
while(r > 1 && (r % 2)) r >>= 1;
if(!g(op(d[r], sm))){
while(r < size){
push(r);
r = (2 * r + 1);
if(g(op(d[r], sm))){
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while((r & -r) != r);
return 0;
}
};