This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/area_of_union_of_rectangles"
#include <bits/stdc++.h>
using namespace std;
#include "../../../lib/data_structure/lazy_segment_tree.hpp"
#include "../../../lib/others/compression.hpp"
const long long INF = 0x1fffffffffffffff;
struct S{
long long len, mn;
};
struct F{
long long add;
};
F ID = {0};
S op(S l, S r){
if(l.mn < r.mn){
return l;
}
if(l.mn > r.mn){
return r;
}
return S{l.len + r.len, l.mn};
}
S e(){
return S{0, INF};
}
S mapping(F f, S x){
return S{x.len, x.mn + f.add};
}
F composition(F f, F g){
return F{f.add + g.add};
}
F id(){
return ID;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n; cin >> n;
vector<long long> l(n), d(n), r(n), u(n);
vector<long long> x, y;
for(int i = 0; i < n; i++){
cin >> l[i] >> d[i] >> r[i] >> u[i];
x.push_back(l[i]);
x.push_back(r[i]);
y.push_back(d[i]);
y.push_back(u[i]);
}
compress<long long> xc(x), yc(y);
int xs = xc.size(), ys = yc.size();
LazySegTree<S, op, e, F, mapping, composition, id> seg(xs - 1);
for(int i = 0; i < xs - 1; i++){
seg.update(i, {xc.inv(i + 1) - xc.inv(i), 0});
}
vector<vector<tuple<int, int, int>>> q(ys);
for(int i = 0; i < n; i++){
int l_ = xc.compressed[2 * i], r_ = xc.compressed[2 * i + 1];
q[yc.compressed[2 * i]].emplace_back(l_, r_, 1);
q[yc.compressed[2 * i + 1]].emplace_back(l_, r_, -1);
}
long long ans = 0;
long long xlen = xc.inv(xs - 1) - xc.inv(0);
for(int i = 0; i < ys - 1; i++){
for(auto [l_, r_, w] : q[i]){
seg.apply(l_, r_, F{w});
}
S res = seg.all_query();
long long t = (res.mn == 0) ? (xlen - res.len) : (xlen);
ans += t * (yc.inv(i + 1) - yc.inv(i));
}
cout << ans << "\n";
}
#line 1 "test/library_checker/data_structure/area_of_union_of_rectangles.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/area_of_union_of_rectangles"
#include <bits/stdc++.h>
using namespace std;
#line 2 "lib/data_structure/lazy_segment_tree.hpp"
template <class S,
S(*op)(S, S),
S(*e)(),
class F,
S(*mapping)(F, S),
F(*composition)(F, F),
F(*id)()>
struct LazySegTree{
private:
int _n, size, log;
vector<S> d;
vector<F> lz;
void pull(int k){ d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f){
d[k] = mapping(f, d[k]);
if(k < size) lz[k] = composition(f, lz[k]);
}
void push(int k){
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
public:
LazySegTree() : LazySegTree(0){}
LazySegTree(int n) : LazySegTree(vector<S>(n, e())){}
LazySegTree(const vector<S> &v) : _n(int(v.size())){
log = 0;
size = 1;
while(size < _n) size <<= 1, log++;
d = vector<S>(2 * size, e());
lz = vector<F>(size, id());
for(int i = 0; i < _n; i++) d[size + i] = v[i];
for(int i = size - 1; i >= 1; i--){
pull(i);
}
}
void update(int p, S x){
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for(int i = 1; i <= log; i++) pull(p >> i);
}
S get(int p){
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S query(int l, int r){
assert(0 <= l && l <= r && r <= _n);
if(l == r) return e();
l += size;
r += size;
for(int i = log; i >= 1; i--){
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while(l < r){
if(l & 1) sml = op(sml, d[l++]);
if(r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_query(){ return d[1]; }
void apply(int p, F f){
assert(0 <= p && p < _n);
p += size;
for(int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for(int i = 1; i <= log; i++) pull(p >> i);
}
void apply(int l, int r, F f){
assert(0 <= l && l <= r && r <= _n);
if(l == r) return;
l += size;
r += size;
for(int i = log; i >= 1; i--){
if(((l >> i) << i) != l) push(l >> i);
if(((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while(l < r){
if(l & 1) all_apply(l++, f);
if(r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for(int i = 1; i <= log; i++){
if(((l >> i) << i) != l) pull(l >> i);
if(((r >> i) << i) != r) pull((r - 1) >> i);
}
}
template <bool (*g)(S)>
int max_right(int l){
return max_right(l, [](S x){ return g(x); });
}
template <class G>
int max_right(int l, G g){
assert(0 <= l && l <= _n);
assert(g(e()));
if(l == _n) return _n;
l += size;
for(int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do{
while(l % 2 == 0) l >>= 1;
if(!g(op(sm, d[l]))){
while(l < size){
push(l);
l = (2 * l);
if(g(op(sm, d[l]))){
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while((l & -l) != l);
return _n;
}
template <bool (*g)(S)>
int min_left(int r){
return min_left(r, [](S x){ return g(x); });
}
template <class G>
int min_left(int r, G g){
assert(0 <= r && r <= _n);
assert(g(e()));
if(r == 0) return 0;
r += size;
for(int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do{
r--;
while(r > 1 && (r % 2)) r >>= 1;
if(!g(op(d[r], sm))){
while(r < size){
push(r);
r = (2 * r + 1);
if(g(op(d[r], sm))){
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while((r & -r) != r);
return 0;
}
};
#line 2 "lib/others/compression.hpp"
/**
* @brief Compression (座標圧縮)
* @docs docs/others/compression.md
*/
#line 10 "lib/others/compression.hpp"
template <typename T>
struct compress{
std::vector<T> sorted;
std::vector<int> compressed;
compress(const std::vector<T> &vec){
int n = vec.size();
compressed.resize(n);
for(T x : vec){
sorted.emplace_back(x);
}
std::sort(sorted.begin(), sorted.end());
sorted.erase(std::unique(sorted.begin(), sorted.end()), sorted.end());
for(int i = 0; i < n; ++i){
compressed[i] = std::lower_bound(sorted.begin(), sorted.end(), vec[i]) - sorted.begin();
}
}
int get(const T &x) const{
return std::lower_bound(sorted.begin(), sorted.end(), x) - sorted.begin();
}
T inv(const int x) const{
return sorted[x];
}
size_t size() const{
return sorted.size();
}
std::vector<int> getCompressed() const{
return compressed;
}
};
#line 7 "test/library_checker/data_structure/area_of_union_of_rectangles.test.cpp"
const long long INF = 0x1fffffffffffffff;
struct S{
long long len, mn;
};
struct F{
long long add;
};
F ID = {0};
S op(S l, S r){
if(l.mn < r.mn){
return l;
}
if(l.mn > r.mn){
return r;
}
return S{l.len + r.len, l.mn};
}
S e(){
return S{0, INF};
}
S mapping(F f, S x){
return S{x.len, x.mn + f.add};
}
F composition(F f, F g){
return F{f.add + g.add};
}
F id(){
return ID;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n; cin >> n;
vector<long long> l(n), d(n), r(n), u(n);
vector<long long> x, y;
for(int i = 0; i < n; i++){
cin >> l[i] >> d[i] >> r[i] >> u[i];
x.push_back(l[i]);
x.push_back(r[i]);
y.push_back(d[i]);
y.push_back(u[i]);
}
compress<long long> xc(x), yc(y);
int xs = xc.size(), ys = yc.size();
LazySegTree<S, op, e, F, mapping, composition, id> seg(xs - 1);
for(int i = 0; i < xs - 1; i++){
seg.update(i, {xc.inv(i + 1) - xc.inv(i), 0});
}
vector<vector<tuple<int, int, int>>> q(ys);
for(int i = 0; i < n; i++){
int l_ = xc.compressed[2 * i], r_ = xc.compressed[2 * i + 1];
q[yc.compressed[2 * i]].emplace_back(l_, r_, 1);
q[yc.compressed[2 * i + 1]].emplace_back(l_, r_, -1);
}
long long ans = 0;
long long xlen = xc.inv(xs - 1) - xc.inv(0);
for(int i = 0; i < ys - 1; i++){
for(auto [l_, r_, w] : q[i]){
seg.apply(l_, r_, F{w});
}
S res = seg.all_query();
long long t = (res.mn == 0) ? (xlen - res.len) : (xlen);
ans += t * (yc.inv(i + 1) - yc.inv(i));
}
cout << ans << "\n";
}