This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/gcd_convolution"
#include <iostream>
#include <vector>
#include "../../../lib/convolution/gcd_convolution.hpp"
#include "../../../lib/math/modint.hpp"
using namespace std;
using mint = ModInt<998244353>;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n; cin >> n;
vector<mint> a(n + 1), b(n + 1);
for(int i = 1; i <= n; ++i){
cin >> a[i];
}
for(int i = 1; i <= n; ++i){
cin >> b[i];
}
auto c = gcd_convolution(a, b);
for(int i = 1; i <= n; ++i){
cout << c[i] << " \n"[i == n];
}
}
#line 1 "test/library_checker/convolution/gcd_convolution.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/gcd_convolution"
#include <iostream>
#include <vector>
#line 2 "lib/convolution/gcd_convolution.hpp"
/**
* @brief GCD Convolution
* @see https://noshi91.hatenablog.com/entry/2018/12/27/121649
*/
#line 9 "lib/convolution/gcd_convolution.hpp"
#include <cassert>
#line 2 "lib/convolution/divisor_zeta_mobius_transform.hpp"
/**
* @brief Divisor Zeta/Mobius Transform
*/
#line 8 "lib/convolution/divisor_zeta_mobius_transform.hpp"
#line 2 "lib/math/prime_sieve.hpp"
/**
* @brief Prime Sieve (エラトステネスの篩)
* @docs docs/math/prime-sieve.md
*/
#line 9 "lib/math/prime_sieve.hpp"
template <typename T>
struct PrimeSieve{
int n, half;
std::vector<bool> sieve;
std::vector<T> prime_list;
// sieve[i] ... 2 * i + 1
PrimeSieve(T _n) : n(_n){
init();
}
void init(){
if(n < 2){
return;
}
half = (n + 1) / 2;
sieve.assign(half, true);
sieve[0] = false;
prime_list.emplace_back(2);
for(long long i = 1; 2 * i + 1 <= n; ++i){
if(!sieve[i]) continue;
T p = 2 * i + 1;
prime_list.emplace_back(p);
for(long long j = 2 * i * (i + 1); j < half; j += p){
sieve[j] = false;
}
}
}
bool isPrime(T x){
if(x == 2) return true;
if(x % 2 == 0) return false;
return sieve[x / 2];
}
T getPrimeCount(){
return prime_list.size();
}
T getKthPrime(int k){
return prime_list[k];
}
};
#line 10 "lib/convolution/divisor_zeta_mobius_transform.hpp"
template <typename T>
void divisor_zeta_transform(std::vector<T> &a){
int n = a.size() - 1;
PrimeSieve<int> sieve(n);
for(int d = 2; d <= n; d++){
if(sieve.isPrime(d)){
for(int i = 1; i * d <= n; i++){
a[i * d] += a[i];
}
}
}
}
template <typename T>
void divisor_reversed_zeta_transform(std::vector<T> &a){
int n = a.size() - 1;
PrimeSieve<int> sieve(n);
for(int d = 2; d <= n; d++){
if(sieve.isPrime(d)){
for(int i = n / d; i >= 1; i--){
a[i] += a[i * d];
}
}
}
}
template <typename T>
void divisor_mobius_transform(std::vector<T> &a){
int n = a.size() - 1;
PrimeSieve<int> sieve(n);
for(int d = 2; d <= n; d++){
if(sieve.isPrime(d)){
for(int i = n / d; i >= 1; i--){
a[i * d] -= a[i];
}
}
}
}
template <typename T>
void divisor_reversed_mobius_transform(std::vector<T> &a){
int n = a.size() - 1;
PrimeSieve<int> sieve(n);
for(int d = 2; d <= n; d++){
if(sieve.isPrime(d)){
for(int i = 1; i * d <= n; i++){
a[i] -= a[i * d];
}
}
}
}
#line 12 "lib/convolution/gcd_convolution.hpp"
template <typename T>
std::vector<T> gcd_convolution(std::vector<T> f, std::vector<T> g){
const int n = (int) f.size();
assert(f.size() == g.size());
assert(1 <= n);
divisor_reversed_zeta_transform(f);
divisor_reversed_zeta_transform(g);
for(int i = 1; i < n; ++i){
f[i] *= g[i];
}
divisor_reversed_mobius_transform(f);
return f;
}
#line 2 "lib/math/modint.hpp"
#line 5 "lib/math/modint.hpp"
/**
* @brief ModInt
* @docs docs/math/modint.md
*/
template <long long Modulus>
struct ModInt{
long long val;
static constexpr int mod() { return Modulus; }
constexpr ModInt(const long long _val = 0) noexcept : val(_val) {
normalize();
}
void normalize(){
val = (val % Modulus + Modulus) % Modulus;
}
inline ModInt &operator+=(const ModInt &rhs) noexcept {
if(val += rhs.val, val >= Modulus) val -= Modulus;
return *this;
}
inline ModInt &operator-=(const ModInt &rhs) noexcept {
if(val -= rhs.val, val < 0) val += Modulus;
return *this;
}
inline ModInt &operator*=(const ModInt &rhs) noexcept {
val = val * rhs.val % Modulus;
return *this;
}
inline ModInt &operator/=(const ModInt &rhs) noexcept {
val = val * inv(rhs.val).val % Modulus;
return *this;
}
inline ModInt &operator++() noexcept {
if(++val >= Modulus) val -= Modulus;
return *this;
}
inline ModInt operator++(int) noexcept {
ModInt t = val;
if(++val >= Modulus) val -= Modulus;
return t;
}
inline ModInt &operator--() noexcept {
if(--val < 0) val += Modulus;
return *this;
}
inline ModInt operator--(int) noexcept {
ModInt t = val;
if(--val < 0) val += Modulus;
return t;
}
inline ModInt operator-() const noexcept { return (Modulus - val) % Modulus; }
inline ModInt inv(void) const { return inv(val); }
ModInt pow(long long n) const {
assert(0 <= n);
ModInt x = *this, r = 1;
while(n){
if(n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
ModInt inv(const long long n) const {
long long a = n, b = Modulus, u = 1, v = 0;
while(b){
long long t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
u %= Modulus;
if(u < 0) u += Modulus;
return u;
}
friend inline ModInt operator+(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) += rhs; }
friend inline ModInt operator-(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) -= rhs; }
friend inline ModInt operator*(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) *= rhs; }
friend inline ModInt operator/(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) /= rhs; }
friend inline bool operator==(const ModInt &lhs, const ModInt &rhs) noexcept { return lhs.val == rhs.val; }
friend inline bool operator!=(const ModInt &lhs, const ModInt &rhs) noexcept { return lhs.val != rhs.val; }
friend inline std::istream &operator>>(std::istream &is, ModInt &x) noexcept {
is >> x.val;
x.normalize();
return is;
}
friend inline std::ostream &operator<<(std::ostream &os, const ModInt &x) noexcept { return os << x.val; }
};
#line 7 "test/library_checker/convolution/gcd_convolution.test.cpp"
using namespace std;
using mint = ModInt<998244353>;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n; cin >> n;
vector<mint> a(n + 1), b(n + 1);
for(int i = 1; i <= n; ++i){
cin >> a[i];
}
for(int i = 1; i <= n; ++i){
cin >> b[i];
}
auto c = gcd_convolution(a, b);
for(int i = 1; i <= n; ++i){
cout << c[i] << " \n"[i == n];
}
}